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Overview 

Timeline

• Start: Oct.1 2029
• End:   Sept. 31, 2020
• Percent complete: 25%

Budget

• Funding for FY 20  $225K
• Funding for FY 21  $225K
• Funding for FY 22  $225K

Barriers

• Ability to simulate large realistic
systems for  Li electrolyte and Li-S
cathodes

• Stable Li-S cathode material and 
design

Partners

 Prof. Yi Cui, Stanford
 Dr. Gao Liu, LBNL
 Prof. Feng Pan, Beijing Univ. 



Objective and Relevance 

 Li-S battery has a large theoretical capacity (2546 Wh/Kg), but dissolution, 
low electric conductivity have prevented its commercialization

 Need novel design of new Li-S cathode materials

 Real battery systems are often complex, need accurate, yet large scale 
simulations

 Ab initio methods might have the necessary accuracy, but cannot be used
to simulate large systems

 Traditional classical force field is fast, but it is either not accurate enough, 
or does not exist for a given system

 Machine learning force field (ML-FF) can combine the ab initio accuracy 
with the speed of classical force field. 

 The goal is to develop ML-FF to simulate Li-S system, and Li electrolytes



Milestones 

Month/Year Milestones06/2020

12/2019 Li-S cathode design, especially for S attached in polymers

03/2020 Preliminary results for ML-FF development, for S, Li. 

06/2020 Ab initio simulation to study Li diffusion in confined electrolyte and 
charge transfer  during Li-S cathode lithiation process. 

09/2020 Long range electrostatic potential treatment for ML-FF development. 

12/2020 Incorporate the ML-FF for critical interactions with conventional force 
field for the organic molecules. 

03/2021 ML-FF for Li-S systems 

06/2021 Complete ML-FF theory/simulation for Li transport in liquid electrolyte 
and combine it with classical force field

09/2022 Use ML-FF to simulate the Li-S cathode and electrolyte charge and 
discharge process



Approach 

Using first principle simulation to design Li-S cathode systems, and combine
machine learning model and ab initio data generation to develop ML-FF

 Use density functional theory (DFT) calculation to study Li-S attached 
to conductive polymer as cathode material

 Use time dependent density functional theory (TDDFT) approach to 
study the electron transport in S cathode lithiation process. 

 Use ab initio molecular dynamics (AIMD) to study Li diffusion in electrolyte
when it is close to the surface

 Use AIMD and special energy decomposition process to generate atomic 
energy data for ML-FF development  

 Test different machine learning (ML) models to optimize ML-FF. 
 Use charge fitting and extraction to separate out the long range charge

interaction energy, hence to make the remaining energy short range, 
amenable for ML-FF model 

 Develop ways to combine the ML-FF for critical interactions, and the 
traditional force field for organic molecules, simplify the ML-FF  development. 

 Using the developed ML-FF to simulate large realistic Li-S battery systems. 



Vulcanize conductive polymer for Li-S battery cathode

Accomplishments 
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Different ways to adding S in polymers, and their vulcanization energies. 
(negative values mean the vulcanization is stable). 

Vulcanization is a process of adding S into polymer, to form cross links to increase
the elastic constant of the polymer (to make it hard rubber). We propose to use
similar processes to conductive polymer to make Li-S cathode materials. We 
theoretically investigated the feasibility of this approach. 



Vulcanize conductive polymer for Li-S battery cathode

Accomplishments 

The lithiation processes and their formation energies for cross linked systems (a)
and bridged chain (condensation) system (b). 20 Li atoms can be added to the 
cross linked system, with almost linear  formation energy as a function of the 
Li atom number. 



Vulcanize conductive polymer for Li-S battery cathode

Accomplishments 

The gravimetric energy density for 
different degree of lithiation. The fully
lithiated system corresponds to 20 
Li atom for one crosslink. 

Possible synthetic routes to make the
cross linked polymner



Using S and ultra-fine black carbon as Li-S cathode material

Accomplishments 

One interesting idea to make Li-S cathode material is to mix ultra-fine black carbon with 
solid sulfur, using carbon as electric conducting material, while S as Li binding material. 
We have used ab initio MD to study the possible systems, using a carbon nanotube to 
represent the black carbon. We found that, if the carbon nanotube is empty, upon 
lithiation, the carbon nanotube will collapse. On the other hand, if the carbon nanotube
is filled with Li, the system will be stable during the lithiation cycle. 



Li+ diffusion in electrolyte when close to a surface

Accomplishments 

It is interesting to study Li+ diffusion in Li electrolyte, when the solvent is confined in a 
narrow space, this is because in many battery systems, the Li-electrolyte is intruded into 
small porous materials.  We have used ab initio molecular dynamics to investigate this 
problem, and found that when it is close to a surface, its diffusion is significantly reduced.  

EC/DMC electrolyte with LiPF6 (a),(b), and 
Their Li-O, Li-F pair distribution function in MD.  

The mean square distance (MSD) as a 
function of time, when the Li+ and PF6

-

are at difference distance from a LiF surface. 



Machine Learning Force Field (ML-FF) development

Accomplishments 

Atomic positions {Rj} within Rc

Features Giα(2), Giαβγ(3)

ML model to fit Ei

We develop ML-FF for Li, S and Li-S systems, as well as Li electrolytes

We have used neural-network, Gaussian process regression,
and linear fitting methods for ML models



Machine Learning Force Field (ML-FF) development

Accomplishments 

Long range Coulomb interaction fitting: ML-FF can only describe the local dependence
of Ei on its nearby atomic positions (within the cut-off Rc). But the Coulomb interaction
is a long range interaction, needs to be treated differently. We have fitted the ionic charges
using spherical models, then subtract the corresponding electrostatic energy from 
the total energy Etot, hence only use ML model to fit the remaining energy.  

the electrostatic potential in a ethylene carbonate (EC) electrolyte with LiPF6 salt. The Li+ and 

PF6
- can induce long range electric field. (a) is the full electrostatic potential, while (b) is the 

electrostatic potential after removing the fitting charge density electrostatic potential. 



Machine Learning Force Field (ML-FF) development

Accomplishments 

NaCl electrostatic potential problem. 

The charge density 
of a melt NaCl liquid

The Coulomb potential
of the system

The residual 
Coulomb potential
after a fitting of the
charge density



Machine Learning Force Field (ML-FF) development

Accomplishments 

S systems ML-FF preliminary results 

The surface phases from ab initio MD at different temperatures

DFT force

M
L-

fo
rc

e

DFT energy

M
L-

en
er

gy

Pair distribution function
ML and DFT results



Machine Learning Force Field (ML-FF) development

Accomplishments 

Na systems ML-FF results. We have not done Li system yet, but we have developed 
a ML-FF for Na  (SANNP), and it is better than the Na embedded atom force field.  

Mean square disance Pair distribution function

Melted liquid to crystal 
growth simulation using 
the ML-FF. 



Collaborations 

 Prof. Yi Cui, Stanford University
on S attachment on metal and graphene surfaces

 Dr. Gao Liu,  LBNL
on polymer with S attachment

 Prof. Feng Pan, Peking University
on various types of battery materials



Remaining Challenges and Barriers 

 Accurate ML-FF for Li-S systems, for large system calculations

 Balance the accuracy of the ML-FF versus the range of 
applicability to different systems 

 Reliable description of the long range Coulomb interaction,
e.g., not affected by the polarization screening

 Possible complex structure of Li-S cathodes, difficult to 
determine the most plausible structure

 A design of Li-S cathode, with sufficient gravimetric and 
volumetric capacity. 

 Direct large scale simulation based on ML-FF for different
Li-S cathode designs



Proposed future work 

 Continue study of S + ultrafine carbon mixture as Li-S 
cathode, especially for electric conductivity, Li diffusion 
and stability. 

 Continue development of ML-FF for Li-S systems, test the 
development procedure and protocol, thus we can develop
a specific ML-FF for a given system quickly. 

 Select one system (e.g., Li-S-C) for an demonstrative study 
using ML-FF for large scale and long time simulations, to 
establish the usefulness of the ML-FF

 Using time dependent density functional theory to study 
possible charge transfer bottleneck during lithiation process
for Li-S cathode. 



Summary 

• Objective and Relevance: using ab initio simulations to understand  the underlying 
mechanism in Li-S reaction process; to design new  Li-S cathode materials; and to develop
machine learning force field (ML-FF) for large scale simulations with ab initio accuracy.  

• Approach: ab initio density functional theory based simulations;  large ab initio data, ML-
FF development, and use ML-FF to carry out large scale simulations. 

• Technical Accomplishments: Studied vulcanize conductive polymer as Li-S cathode 
material. Studied mixture of S and ultrafine black carbon as Li-S cathode material. 
Investigated Li+ diffusion in the Li electrolyte when the ion is close to a surface. Developed 
preliminary S-S interaction ML-FF. Developed Na metal ML-FF, and its procedure can be 
readily extended to study Li metal. Tested different methods to describe the long range 
Coulomb interactions. 

• Collaboration and Coordination: Yi Cui, Stanford; Liu Gao, LBNL; Feng Pan, Peking Univ. 

• Remaining Challenges and Barriers: Accurate and reliable ML-FF for Li-S-C systems. 

• Proposed Future Work: Continue the development of ML-FF for Li-S-C systems; study the 
electron transfer bottleneck during lithiation process for Li-S battery. 
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